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Abstract

The design of a trusted system based on the Trusted Computing
Group’s Trusted Platform Module (TPM) was analyzed to understand
the role and trust relationships of the TPM, firmware, and software
modules involved. The objective was to confirm that the measurements
stored and reported by the TPM can successfully discriminate a normal
boot sequence, which leaves trusted system software in control, from
an insecure one, where some trusted modules might have been replaced
by malicious ones. The principal tool used in the analysis was the SMV
symbolic model checker.

1 Introduction

The Trusted Platform Module (TPM) technology, developed and standard-
ized by the Trusted Computing Group, provides a hardware root of trust for
reliable integrity reporting. In conjunction with a public key infrastructure,
TPM features support attestation protocols that permit a remote party to
obtain a reliable report on the configuration of a platform. The ability to
obtain authentic information about a remote platform is essential in a dy-
namic global Internet environment, where clients may seek services from
remote systems that they have not previously used or authenticated.

By storing and reporting a record of the software loaded and executed
during system initialization, a TPM provides information relevant to trust
relationships between a client and server. Trust relationships should depend
not only on the identity of the owner or user of the platform, but also on
the identity, quality and integrity of the software running on it.
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A TPM does not, by itself, ensure that a platform was booted with
trusted software, but it can provide a digitally signed report that shows
that a certified TPM is present, and also shows what software was booted,
so that an external appraiser can check it against the expected or desired
configuration. It has some additional functions as well, to support secure
storage and cryptographic services.

The TPM is a fairly complicated device, although the basic principles of
storage and reporting of measurements are conceptually simple. In a TPM-
equipped system, the boot sequence begins with firmware on the TPM chip.
Each firmware or software module in the boot sequence stores a hash value
of the next module into a PCR (Platform Configuration Register) in the
TPM. The validity of each measurement is conditioned on the correctness of
the module performing the measurement, which was itself measured. This
is the “chain of trust”.

In the more recent version 1.2 of the TPM, some of the responsibility
for trusted operations is delegated to external firmware in the associated
chipset, as provided by the CPU manufacturers. This permits some flexi-
bility, such as a partial reboot with new low-level system software, called a
“late launch”. It also complicates the argument supporting the integrity of
the stored measurements.

The chain of trust rationale is explained in [1] and [3]. The argument
supporting the extended architecture as implemented by Intel for the TPM
version 1.2 is covered in detail in [4]. An application of the AMD chipset
for the TPM 1.2 is described in [9].

There is a conceptual gap between the basic idea of the chain of trust,
and the implementation details, as covered carefully but informally in a
reference like [4]. This led us to ask if we could check the argument for
validity of measurements formally, using an abstract model of the TPM 1.2
and associated architecture. A particular concern was to model the possi-
bly malicious misbehavior of contaminated trusted software, which might
attempt to load the expected measurements into the TPM registers. With
a model checker, we could attempt to prove that if the measurements are
the expected ones, then the software in control does, in fact, have those
measurements. The modeling activity should also expose the assumptions
underlying this conclusion.

An initial version of such a model, written for the SMV model checker
[5], has been developed and exercised. We have used it to check which PCRs
had to be reported in order to infer that desired system software is present,
and to verify an expected property of late launch, namely, that even if the
BIOS is compromised, the late launch process still permits trusted system
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Figure 1: Modules and Measurements

software to be loaded and confirmed. The present model is not viewed as
final, but rather a starting point to investigate different configurations and
further implementation detail.

2 The Launch Model

The system software architecture appearing in the model is generic, and
based loosely on existing experimental prototypes of which we have some
knowledge. The boot sequence is constrained by the requirements of the
TPM 1.2 and associated chipset, but once the sequence reaches the persistent
operating system kernel that takes control of memory management, there
are many alternatives. In our notional design, we assume a hypervisor that
supports virtualization, with an operating system kernel above it.

The expected launch sequence is shown in Figure 1. Each box in the left
side of the figure represents a firmware or software module that performs
some essential functions for system startup, then transfers control to the
next module higher up, loading it into memory first if necessary. The bottom
module, the CRTM (Core Root of Trust for Measurement), also known as
the Trusted Boot Block of the BIOS, is firmware that is guaranteed by the
TPM support chipset to be executed first. It performs a self-measurement,
so its measurement is not put in a PCR.

The PCRs that are used in this boot sequence are shown on the right
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side of the figure. That part of the figure will be explained later. Full mea-
surements are not necessarily stored in PCRs, but rather in a separate log.
A PCR only has room for a 160-bit hash. In the case of launch modules,
however, the hash of the module contents does happen to be its measure-
ment.

Lower modules are expected to execute only once (until a reboot), while
the hypervisor and OS kernel remain available. Processes above the OS ker-
nel come and go as needed. Measurement of application software is presently
not modeled, though later versions of the model might include them.

This section concludes with some reference information regarding the
SMV model checker. In the next two sections, the launch model is described.
The last section presents the security properties that were tested and shows
how the analysis result was obtained.

2.1 SMV Sources

Source code and some binaries for the SMV model checker are available from
the CMU Web site [6]. One can also use the NuSMV system available from
the ITC-irst research center in Italy, from its Web site [7]. NuSMV is a re-
implementation of SMV as an open source project, and has some additional
features such as a SAT solver (as opposed to the BDD solver in SMV) and
some extensions and options for property specification formulas. The model
can be run using either tool.

3 General Features of the Model

The launch model is a high-level abstract model designed to capture the
essential logical features of the launch and measurement process. The struc-
ture of the model is as general as possible to allow different configurations
and assumptions to be examined and compared.

An SMV model consists of modules specifying component types, and a
particular module called main specifying how a system is constructed by
interconnecting instances of the component types. The main module also
includes a list of properties to be tested.

The model has a module for each of the boxes shown on the left in
Fig. 1. These modules are instances of a type we refer to as “executable”.
The model also has a module type for PCRs. Figure 1 shows the expected
placement of measurements. In the figure, the measurements follow the
arrows, and the dotted lines indicate which module is performing and writing
the measurement.
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In the notional design,the hypervisor and kernel modules are loaded from
a single image, and this combined image is measured into PCR 18. The Intel
description of SINIT in [4] states that SINIT extends PCR 17 with a hash of
the SMI Transfer Monitor (STM) for System Management Interrupts when
the STM is enabled.

The specification of a module includes its state variables and its next-
state transition relation. The normal style of state transitions in SMV is a
parallel or synchronous assignment in which all variables receive their new
values in a single “tick”. An asynchronous option is available, but was not
used in this model.

One tick in the model represents a period of time during which exactly
one of the explicitly specified executable modules is in control. PCRs are
passive, and may undergo a transition in parallel with any executable mod-
ule. Applications are represented with a single untrusted generic executable
module, not shown. Any transfer of control starts a new state.

3.1 Executable Modules

The module type exec represents the state of an executable program in-
stance, especially a member of the launch sequence. Conceptually, a module
instance is a contiguous portion of memory, whether it is in main memory,
flash memory, or microcode, with a designated entry point. At a given time,
that portion of memory may or may not contain trusted code. In the model,
the state of a module is a boolean variable good. If the state of a trusted
module is good, we can predict what it measures and launches. The variable
good reflects the true state of the module, and part of our modeling concern
is to establish a logical connection between the true state and the reported
PCR values.

Instances of an executable module are characterized by three simple pa-
rameters: init good, loadable, and corruptible. The first, init good,
determines the initial value of good. The second, loadable, indicates whether
or not the module is capable of changing from a not-good to a good state.
If this is true, the module is associated with a portion of main memory that
can or must be loaded from disk, so that init good should normally be false
for it. On the other hand, if it is read-only microcode, its goodness value
will remain at whatever the initial value was.

good99

corruptible
,, not
goodmm

loadable
ll
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The third parameter, corruptible, indicates whether the module is ca-
pable of changing from a good to a not-good state. A false value reflects
the ability of good software to protect itself from adverse modification, due
to its control over DMA, page registers, interrupts. Non-corruptibility also
implies that the module does not damage itself or behave in ways that vio-
late the measurement and execution assumptions for it. The corruptibility
parameter is the one that requires the most thought when assigning it for a
given executable module.

The executable module instances normally receive fixed parameter values
that characterize the inherent qualities of the module. One exception to this
rule is that the kernel is corruptible if and only if the hypervisor is not good,
since a bad hypervisor can undercut the defenses of the kernel. Thus, kernel
is specified as an executable instance with corruptible parameter equal to
!hyp.good. (A parameter value can be a state variable value from another
module.)

We might make another exception to this in the future to analyze the
benefits of remeasurement of the hypervisor or kernel, if their noncorrupt-
ibility is viewed as subject to failure due to unknown flaws or vulnerabilities,
triggered by some untrusted software.

There is no explicit transition to force loading of a good copy of soft-
ware. When a module is loadable and not good, the next state of good is
undetermined - that is, there is a nondeterministic transition in which good
becomes either true or false. This makes sense because it allows for two pos-
sibilities: that good software is loaded into the module memory from disk,
or that the loaded software is not good because the load is unsuccessful or
the disk image is corrupted or buggy.

If a module is currently good but it is corruptible, the undetermined
case also applies, since it might be modified by DMA. This transition can
happen whether the module is currently being executed or not.

3.2 The PCR Module

A PCR module has one state variable, representing its value symbolically,
and two parameters: static, which is a fixed boolean value, and input.
A PCR is dynamic (not static), according to the TPM specification, if it
can be reset without a reboot. Static PCRs, 0-15, are reset only on system
reboot. PCRs 16 and above are dynamic.

The value of the input parameter is either a reset command, a new value
to be stored with a TPM Extend command, or a value indicating the absence
of any command or input. The input parameter value is determined by the
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behavior of the executable component currently running.
Measurements are symbolized with constants BIOSm, SINITm, STMm,

SYSm, SISTm representing expected possible measurements. A PCR might
also have the symbolic values ZERO, the zero value caused by a static re-
set; FFFF, the all-ones value set by an SENTER reset, or UNTm, a value
symbolically representing any unexpected value.

The TPM Extend command does not simply write into a PCR; it com-
bines the former value with the new one by hashing the concatenation. This
behavior is carried out symbolically in the model.

4 Main Module

The module main identifies the instances of PCRs and executable modules
being used, shows how their arguments are computed, and manages the
execution sequencing via a program counter variable pc. It also specifies the
security properties being tested.

There is a module instance for each of the boxes in Figure 1 except for
the STM, which has a measurement but is not launched explicitly.

4.1 The Program Counter

The symbolic values of the variable pc represent the executable modules in
the launch sequence. Keep in mind that the PC points to areas in microcode
or main memory that may or may not contain good trusted code. The value
UNT represents any location that is unknown or untrusted, but not one of
the other named modules.

The launch sequence is determined by the initial and next-state assign-
ment for pc, shown here:

ASSIGN
init(pc) := CRTM;
next(pc) := case
pc = CRTM & crtm.good : BIOS;
pc = BIOS & bios.good : LOADER;
pc = LOADER & loader.good : SENTER0;
pc = SENTER0 & senter0.good : SENTER1;
pc = SENTER1 & senter1.good & sinit.good : SINIT;
pc = SENTER1 & senter1.good & !sinit.good : UNT;
pc = SINIT & sinit.good : HYP;

7



pc = HYP & hyp.good : KER;
pc = KER & ker.good : {HYP,KER,UNT};
1 : {BIOS,LOADER,SENTER0,SINIT,HYP,KER,UNT};
esac;

This assignment conveys some interesting features of the boot sequence.
The launch sequence starts with the CRTM (trusted boot block) and

thereafter depends on the current pc value. Note that the next value of pc
is predictable only when the current module is good. For example, if the
boot loader is good, it should finish up by executing SENTER. Although
SENTER is an instruction rather than a programmable module, it is treated
here as a trusted module, since it has a role in the launch sequence compa-
rable with other modules such as the CRTM and SINIT.

SENTER is split artificially into two modules, SENTER0 and SEN-
TER1, because it has two successive effects on PCRs. First, it resets the
dynamic PCRs 17-20. Then, it normally puts a measurement of SINIT into
PCR 17. The normal sequencing is therefore SENTER0, SENTER1, SINIT.

Because SINIT is an authenticated code module, SENTER can check
its measurement before launching it. The normal launch sequence aborts
if SINIT has a bad measurement. (The exclamation point ! is used for
negation in SMV.)

The “else” case (with boolean condition 1) is taken when running module
is not in a good state, in which case the next PC value is unpredictable, and
its new value can be any of the modules listed. A late-launch scenario could
be modeled by changing the next state of the loader to UNT, representing an
untrusted operating system.

The transition from hypervisor to kernel is, of course, not merely a
branch, but a complex process involving the creation of a virtual machine
and the initialization of the kernel. More detail could be added here, if there
are multiple alternatives or cases that should be examined.

4.2 PCR Inputs

The inputs to PCRs are given as variables p0in, p17in, p18n. As an
example, consider PCR 17. It is declared as a variable as:

pcr17: pcr(0,p17in)

meaning that it is an instance of the pcr type that is not static, and it gets its
input from a state variable p17in, defined by:
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Module Locality Entity in Reset Extend
control, can PCRs PCRs

Any Any 16,23 16,23
CRTM,BIOS, 0 Static CRTM, None 0-15
KER Static OS

1 Dynamic OS None 20
HYP 2 Dynamic OS 20,21,22 17-22
SINIT 3 Auxiliary trusted None 17-20
SENTER 4 Dynamic CRTM 17-20 17,18

Figure 2: Locality Usage

ASSIGN
p17in := case
pc = SENTER0 & senter0.good : RSET;
pc = SENTER1 & senter1.good & sinit.good : SINITm;
pc = SENTER1 & senter1.good & !(sinit.good) : UNTm;
pc = SINIT & sinit.good : STMm;
pc = HYP & hyp.good : NONE;
pc in {SENTER0,SENTER1,SINIT,HYP} : {NONE,SINITm,STMm,UNTm};
1 : NONE;
esac;

This case statement reflects the possibility that any executing module
may attempt to set PCR 17. Trusted modules other than SENTER and
SINIT will voluntarily leave it alone. If an untrusted or corrupted module
performs TPM Extend, it may try to put some (spurious) valid measurement
into the PCR.

Locality restricts which modules may modify a PCR. In the TPM, lo-
cality restricts the memory address ranges from which certain commands
affecting PCRs will be accepted. Each module has a locality of 0-4 depend-
ing on which address range it occupies. The assignments are made partly
by the chipset and partly by the system architect.

The assumptions made in this version of the model are shown in Figure 2,
which includes Table 1 in Section 3.1 of the TCG PC Client specification. [2]
This table is embodied implicitly in the PCR input variable assignments.
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5 Specification of Security Properties

The launch model is designed to be a tool for investigating a variety of
questions about the relationship between reported PCR values and the state
of the system. This section presents a few particular properties of interest
that have been tested. We begin with a summary of the SMV provisions for
specifying properties.

5.1 SMV Specification Language

Specifications to be tested are written in CTL (Computation Tree Logic). A
CTL formula has the form quantifier temporal-operator boolean-expr where
the quantifier is A or E, and the temporal operators are:

G (globally) from this state onward
F (finally) eventually, in this or some later state
X (next) in the next state
U (until) [ p U q ] p holds in every state until finally q

A formula without the initial quantifier is an LTL (linear temporal logic)
formula. An LTL formula like Gp applies to some particular state sequence
beginning with the current state. If φ is an LTL formula, Aφ means that
φ holds for every possible state sequence beginning with the current state,
and Eφ means that there exists a state sequence from the current state for
which φ holds.

SMV checks each specification for every possible initial state. This is
somewhat confusing for E properties, since it means there is an implicit
“for all” in front of the property. This confusion is avoided in the launch
model by initializing every variable deterministically, so that there is only
one initial state for each model run.

When an AG specification fails for some initial state, SMV generates a
trace showing the failure.

5.2 State of the Kernel and Hypervisor

The basic property we want is that if PCR values are normal, then the kernel
and hypervisor are good. It turns out that this can be guaranteed, but only
if we ask to see enough PCR values.

We might try to express this property for the hypervisor as:

AG (pcr18.val = SYSm -> hyp.good}
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This says that for every reachable state, if PCR 18 has the expected mea-
surement for the system software, then the hypervisor’s “good” value is true.
If we run SMV with this specification, it finds the following counterexample.

pc CRTM BIOS LOADER SENTER0 SENTER1 LOADER HYP BIOS
crtm.good 1 1 1 1 1 1 1 1
bios.good 1 1 1 1 1 1 1 1
loader.good 0 0 0 0 0 0 0 0
senter0.good 1 1 1 1 1 1 1 1
senter1.good 1 1 1 1 1 1 1 1
sinit.good 0 0 0 0 0 0 0 0
hyp.good 0 0 0 0 0 0 0 0
ker.good 0 0 0 0 0 0 0 0
unt.good 0 0 0 0 0 0 0 0
pcr0.val ZERO BIOSm BIOSm BIOSm BIOSm BIOSm BIOSm BIOSm
pcr17.val FFFF FFFF FFFF FFFF ZERO UNTm UNTm UNTm
pcr18.val FFFF FFFF FFFF FFFF ZERO ZERO ZERO SYSm
p0in BIOSm NONE NONE NONE NONE NONE NONE NONE
p17in NONE NONE NONE RSET UNTm NONE STMm NONE
p18in NONE NONE NONE RSET NONE NONE SYSm NONE
biosgood 1 1 1 1 1 1 1 1

The problem discovered by the model checking search is that a bad
SINIT causes SENTER to return to the loader, which can invoke the bad
hypervisor, which can put a spurious good SYSm into PCR 18.

This won’t fool anyone who looks at PCR 17, however, to check for the
expected SISTm value. The spec

AG (
( pcr17.val = SISTm
& pcr18.val = SYSm)
-> (hyp.good & ker.good))

is verified as true. This is the almost the result we were looking for. But
we also want the hypervisor and kernel to remain in a good state when they
are executed subsequently. This holds because they are self protecting, so
the following stronger property is also verified as true.

AG ((
pcr17.val = SISTm & pcr18.val = SYSm )

-> AG ((pc = HYP -> hyp.good) & (pc = KER -> ker.good)))
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This specification holds even when we assume that the BIOS is not good.
It is interesting that the same specifications are also verified without

assuming that SINIT is authenticated, only that it is measured like other
trusted modules. That is, the program counter lines for SENTER1 can be
replaced by the single line

pc = SENTER1 & senter1.good: SINIT;

without changing the result.
The model contains a few other specifications designed to investigate the

relationship between PCR values and the launch sequence. We conclude, for
example, that SENTER must be executed in order to arrive at good and
measured hypervisor and kernel states. Results of this kind may be useful to
analysts as a way to help develop intuition about what steps in the launch
sequence are necessary and how they work.

6 Conclusion

This launch model is lightweight from a performance point of view. The
SMV model generates about 29,000 BDD nodes altogether, but it executes
in a small fraction of a second. The model code is systematic and under-
standable, but a system design change typically results in model changes
distributed over several places. An interface to generate model updates au-
tomatically from concise application-oriented input would be desirable. We
are currently also investigating the use of SAL [10], a more recent language
and modeling framework, for this analysis.

We found, as a result of analysis on the model, that good PCR values in
PCRs 17 and 18 imply that good copies of the hypervisor and kernel have
been loaded, and they remain good as long as they are self-protecting. It
is not sufficient to check PCR 18 only. Corruption of the BIOS (measured
into PCR 0) does not matter, or of non-measured software such as the boot
loader. The analysis depends on the details of how features of the Intel
chipset are used, in particular the way in which localities control access to
PCRs. It also depends on the assumed ability of the hypervisor and kernel to
protect themselves once they are correctly loaded, despite possible malicious
devices or prior misbehavior of the BIOS.

This model is only the first step in a program for using this style of anal-
ysis to check the integrity arguments for a number of different architectures
based on the TPM and measurement strategies.
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