About Lowering Target Numbers
From Spiders
How advantageous is it to lower the target number on a roll, at least before the Central Limit Theorem kicks in?
Fix a target number t. Let a(n, m) denote the probability that a roll of n dice returns at least m;, where we put a(0, m) = 1 for m = 0 and 0 otherwise. Thus the cumulative distribution for the result from a roll of n dice is 1 - a(n, .). The generating function for a is given by
where α = (t − 1) / 10,β = 1 − t / 10, and γ = 1 / 10. With p valid charms such as World-Shaping Artistic Vision and Fateful Excellency that reduce the target number by 1, we have t = 7 - p. For fixed n and p, let Q(d) denote the quantile function for the outcome of the roll; that is, Q(d) is the minimum integer m such that a(n, m) <= 1 - d. The values of Q(d) for various values of n, d, and p = 7 - t are given below.
d = 0.9 | d = 0.75 | d = 0.5 | d = 0.25 | d = 0.1 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 |
n = 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
n = 2 | 2 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
n = 3 | 3 | 3 | 4 | 4 | 2 | 3 | 3 | 3 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 0 | 0 | 1 | 1 |
n = 4 | 4 | 4 | 4 | 5 | 3 | 3 | 4 | 4 | 2 | 2 | 3 | 3 | 1 | 1 | 2 | 2 | 0 | 1 | 1 | 2 |
n = 5 | 4 | 5 | 5 | 6 | 3 | 4 | 4 | 5 | 2 | 3 | 3 | 4 | 1 | 2 | 3 | 3 | 1 | 1 | 2 | 2 |
n = 6 | 5 | 6 | 6 | 7 | 4 | 5 | 5 | 6 | 3 | 4 | 4 | 5 | 2 | 2 | 3 | 4 | 1 | 2 | 2 | 3 |
n = 7 | 6 | 6 | 7 | 8 | 5 | 5 | 6 | 7 | 3 | 4 | 5 | 6 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 |
n = 8 | 6 | 7 | 8 | 9 | 5 | 6 | 7 | 8 | 4 | 5 | 6 | 6 | 3 | 3 | 4 | 5 | 2 | 2 | 3 | 4 |
n = 9 | 7 | 8 | 9 | 9 | 6 | 7 | 8 | 8 | 4 | 5 | 6 | 7 | 3 | 4 | 5 | 6 | 2 | 3 | 4 | 5 |
n = 10 | 8 | 9 | 10 | 10 | 6 | 7 | 8 | 9 | 5 | 6 | 7 | 8 | 3 | 5 | 6 | 7 | 2 | 3 | 4 | 6 |
n = 11 | 8 | 9 | 10 | 11 | 7 | 8 | 9 | 10 | 5 | 7 | 8 | 9 | 4 | 5 | 6 | 7 | 3 | 4 | 5 | 6 |
n = 12 | 9 | 10 | 11 | 12 | 8 | 9 | 10 | 11 | 6 | 7 | 8 | 10 | 4 | 6 | 7 | 8 | 3 | 4 | 6 | 7 |
n = 13 | 10 | 11 | 12 | 13 | 8 | 9 | 11 | 12 | 6 | 8 | 9 | 10 | 5 | 6 | 8 | 9 | 3 | 5 | 6 | 8 |
n = 14 | 10 | 12 | 13 | 14 | 9 | 10 | 11 | 13 | 7 | 8 | 10 | 11 | 5 | 7 | 8 | 10 | 4 | 5 | 7 | 8 |
n = 15 | 11 | 12 | 14 | 15 | 9 | 11 | 12 | 14 | 7 | 9 | 10 | 12 | 6 | 7 | 9 | 10 | 4 | 6 | 7 | 9 |
n = 16 | 12 | 13 | 14 | 16 | 10 | 11 | 13 | 14 | 8 | 10 | 11 | 13 | 6 | 8 | 9 | 11 | 5 | 6 | 8 | 10 |
n = 17 | 12 | 14 | 15 | 17 | 10 | 12 | 14 | 15 | 8 | 10 | 12 | 14 | 7 | 8 | 10 | 12 | 5 | 7 | 9 | 10 |
n = 18 | 13 | 14 | 16 | 18 | 11 | 13 | 14 | 16 | 9 | 11 | 13 | 14 | 7 | 9 | 11 | 13 | 5 | 7 | 9 | 11 |
n = 19 | 13 | 15 | 17 | 19 | 11 | 13 | 15 | 17 | 9 | 11 | 13 | 15 | 7 | 9 | 11 | 13 | 6 | 8 | 10 | 12 |
n = 20 | 14 | 16 | 18 | 19 | 12 | 14 | 16 | 18 | 10 | 12 | 14 | 16 | 8 | 10 | 12 | 14 | 6 | 8 | 10 | 13 |